Новое

Читать

Столкновение галактик «Андромеды» и «Млечного Пути»

Ну и на этом все, буквами было сложно все объяснить поэтому мы приложили иллюстрацию в виде картинок, посмотрите и сразу станет все понятно. 


Winter Battle Pass 2017

27 января в очередном обновлении Dota 2 разработчики добавили Winter Battle Pass 2017, а также внесли незначительные изменения в игру и игровой клиент.


Изучаем нейронные сети за четыре шага
В этот раз я решил изучить нейронные сети. Базовые навыки в этом вопросе я смог получить за лето и осень 2015 года. Под базовыми навыками я имею в виду, что могу сам создать простую нейронную сеть с нуля. Примеры можете найти в моих репозиториях на GitHub. В этой статье я дам несколько разъяснений и поделюсь ресурсами, которые могут пригодиться вам для изучения. Шаг 1. Нейроны и метод прямого распространения Так что же такое «нейронная сеть»? Давайте подождём с этим и сперва разберёмся с одним нейроном. Нейрон похож на функцию: он принимает на вход несколько значений и возвращает одно. Круг ниже обозначает искусственный нейрон. Он получает 5 и возвращает 1. Ввод — это сумма трёх соединённых с нейроном синапсов (три стрелки слева). В левой части картинки мы видим 2 входных значения (зелёного цвета) и смещение (выделено коричневым цветом). Входные данные могут быть численными представлениями двух разных свойств. Например, при создании спам-фильтра они могли бы означать наличие более чем одного слова, написанного ЗАГЛАВНЫМИ БУКВАМИ, и наличие слова «виагра». Входные значения умножаются на свои так называемые «веса», 7 и 3 (выделено синим). Теперь мы складываем полученные значения со смещением и получаем число, в нашем случае 5 (выделено красным). Это — ввод нашего искусственного нейрона. Потом нейрон производит какое-то вычисление и выдает выходное значение. Мы получили 1, т.к. округлённое значение сигмоиды в точке 5 равно 1 (более подробно об этой функции поговорим позже). Если бы это был спам-фильтр, факт вывода 1 означал бы то, что текст был помечен нейроном как спам. Иллюстрация нейронной сети с Википедии. Если вы объедините эти нейроны, то получите прямо распространяющуюся нейронную сеть — процесс идёт от ввода к выводу, через нейроны, соединённые синапсами, как на картинке слева. Я очень рекомендую посмотреть серию видеосерию видео от Welch Labs для улучшения понимания процесса. Шаг 2. Сигмоида После того, как вы посмотрели уроки от Welch Labs, хорошей идеей было бы ознакомиться с четвертой неделей курса по машинному обучению от Coursera, посвящённой нейронным сетям — она поможет разобраться в принципах их работы. Курс сильно углубляется в математику и основан на Octave, а я предпочитаю Python. Из-за этого я пропустил упражнения и почерпнул все необходимые знания из видео. Сигмоида просто-напросто отображает ваше значение (по горизонтальной оси) на отрезок от 0 до 1. Первоочередной задачей для меня стало изучение сигмоиды, так как она фигурировала во многих аспектах нейронных сетей. Что-то о ней я уже знал из третьей недели вышеупомянутого курса, поэтому я пересмотрел видео оттуда. Но на одних видео далеко не уедешь. Для полного понимания я решил закодить её самостоятельно. Поэтому я начал писать реализацию алгоритма логистической регрессии (который использует сигмоиду). Это заняло целый день, и вряд ли результат получился удовлетворительным. Но это неважно, ведь я разобрался, как всё работает. Код можно увидеть здесь. Вам необязательно делать это самим, поскольку тут требуются специальные знания — главное, чтобы вы поняли, как устроена сигмоида. Шаг 3. Метод обратного распространения ошибки Понять принцип работы нейронной сети от ввода до вывода не так уж и сложно. Гораздо сложнее понять, как нейронная сеть обучается на наборах данных. Использованный мной принцип называется методом обратного распространения ошибки. Вкратце: вы оцениваете, насколько сеть ошиблась, и изменяете вес входных значений (синие числа на первой картинке). Процесс идёт от конца к началу, так как мы начинаем с конца сети (смотрим, насколько отклоняется от истины догадка сети) и двигаемся назад, изменяя по пути веса, пока не дойдём до ввода. Для вычисления всего этого вручную потребуются знания матанализа. Khan Academy предоставляет хорошие курсы по матанализу, но я изучал его в университете. Также можно не заморачиваться и воспользоваться библиотеками, которые посчитают весь матан за вас. Скриншот из руководства Мэтта Мазура по методу обратного распространения ошибки. Вот три источника, которые помогли мне разобраться в этом методе: A Step by Step Backpropagation Example от Matt Mazur; Hacker’s guide to Neural Networks от Andrej Karpathy; Using neural nets to recognize handwritten digits от Michael Nielsen. В процессе прочтения первых двух статей вам обязательно нужно кодить самим, это поможет вам в дальнейшем. Да и вообще, в нейронных сетях нельзя как следует разобраться, если пренебречь практикой. Третья статья тоже классная, но это скорее энциклопедия, поскольку она размером с целую книгу. Она содержит подробные объяснения всех важных принципов работы нейронных сетей. Эти статьи также помогут вам изучить такие понятия, как функция стоимости и градиентный спуск. Шаг 4. Создание своей нейронной сети При прочтении различных статей и руководств вы так или иначе будете писать маленькие нейронные сети. Рекомендую именно так и делать, поскольку это — очень эффективный метод обучения. Ещё одной полезной статьёй оказалась A Neural Network in 11 lines of Python от IAmTrask. В ней содержится удивительное количество знаний, сжатых до 11 строк кода. Скриншот руководства от IAmTrask После прочтения этой статьи вам следует написать реализацию всех примеров самостоятельно. Это поможет вам закрыть дыры в знаниях, а когда у вас получится, вы почувствуете, будто обрели суперсилу. Поскольку в примерах частенько встречаются реализации, использующие векторные вычисления, я рекомендую пройти курс по линейной алгебре от Coursera. После этого можно ознакомиться с руководством Wild ML от Denny Britz, в котором разбираются нейронные сети посложнее. Теперь вы можете попробовать написать свою собственную нейронную сеть или поэкспериментировать с уже написанными. Очень забавно найти интересующий вас набор данных и проверить различные предположения при помощи ваших сетей. Для поиска хороших наборов данных можете посетить мой сайт Datasets.co и выбрать там подходящий. Так или иначе, теперь вам лучше начать свои эксперименты, чем слушать мои советы. Лично я сейчас изучаю Python-библиотеки для программирования нейронных сетей, такие как Theano, Lasagne и nolearn. Удачи!

Текст Хованскому на Versus написал Rickey F ?

Источники The Flow сообщают: "Текст Хованскому на Versus написал Rickey F"


Трансляция со связанной девушкой и таймером в Periscope и YouTube

Сегодня на просторах Periscope и YouTube была обнаружена очень странная и одновременно жуткая трансляция со связанной девушкой. Она сидит на стуле, ее рот и тело перемотано скотчем, а на ногах закреплен планшет, демонстрирующий обратный отчет (старт был с 10-ти часов).

Данную трансляцию начали активно обсуждать на Дваче, пытаясь разгадать тайны этой трансляции. Иногда в комнате происходят действия. Так на 8 часу трансляции в комнате погас свет. Иногда можно расслышать чьи-то шаги и звуки проезжающих машин. Сама девушка ничего не делает: просто сидит неподвижно и молчит.


Автоматы заряжания установленные на танках

Устанавливается обычно в боевых машинах, в том числе танках, БМП, БМД, САУ. Также применяется в артиллерийских установках на кораблях и в крепостных и зенитных орудиях. Использование автомата заряжания облегчает работу расчёта орудия и позволяет сократить численность экипажа; часто также приводит к увеличению скорострельности.


Безвредны ли электронные сигареты?

В последнее время в моде здоровый образ жизни. Курение уже не стильно и не круто. Курильщикам становится все сложнее. Вводятся более жесткие ограничения, касающиеся курения.

Сейчас активно рекламируются электронные сигареты. Реклама упорно твердит нам о том, что это абсолютно безвредная для здоровья альтернатива обычным сигаретам, которая помогает постепенно бросить курить. Так ли это?


Татуировки Сак Янт

ровкой, которая отличается особой сакральностью. Делают их преимущественно в Таиланде. Если хочется сделать на теле тату, то надо иметь в виду, что Сак Янт – не просто рисунок на теле. Эта татуировка наделяется магической силой. Перед тем, как ее сделать, стоит подумать несколько раз: действительно ли вам это надо? Это не простое тату, которое может сделать любой мастер. Сак Янт может повернуть судьбу своего обладателя в хорошую, или, наоборот, плохую сторону. Обо всём подробно в нашей статье.


Простой способ накрутить диалоги в «в контакте»

Сегодня журнал Appi расскажет, как в два клика накрутить себе очень много диалогов в вк. Итак, вы должны выполнить всего 3 пункта.

Как все эти пункты выглядят в картинках


25 самых ожидаемых книг 2017 года

Семейные романы, первоклассные детективы, парализующе пугающие триллеры, сильные любовные истории, монументальные исследования и смелые технологические прогнозы ждут нас в этом литературном году.

Любимый герой миллионов читателей Харри Холе возвращается в новом романе Ю Несбё «Жажда». На русском языке книга выйдет в издательстве «Азбука-Аттикус» в мае 2017 года.